

Evaluation of corner connection with wide flange brace in Ordinary Concentrically Braced Frame (OCBF) - CBFEM

1

Strength of Elements in Compression

The available strength of connecting elements in compression for the *limit states* of yielding and buckling shall be determined as follows:

(a) When $KL/r \leq 25$

$$P_n = F_y A_g$$

$\phi = 0.90$ (LRFD) $\Omega = 1.67$ (ASD)

(J4-6)

(b) When $KL/r > 25$, the provisions of Chapter E apply.



Figure 2.4-2: Gusset plate diagram indicating Thornton lengths (Tsai and Hsiao 2008)

Available compressive strength of the gusset plate based on the limit state of flexural buckling is determined from **AISC Specification Section J4.4**, and then compared with **design compression load** to determine if buckling is a limit state

Available compression strength < Design Compression load

Connection **safe for buckling**

Available compression strength > Design Compression load

Connection **not safe for buckling** and requires modifications

1. Evaluation of buckling according to AISC (AISC 360-16)

Global

Steel Fy	AISC Method	Critical buckling factor
36 ksi	LRFD	$\alpha_{cr} > 12.7$
50 ksi	LRFD	$\alpha_{cr} > 9.16$
36 ksi	ASD	$\alpha_{cr} > 21$
50 ksi	ASD	$\alpha_{cr} > 15$

Local

AISC Method	Critical buckling factor
LRFD	$\alpha_{cr} > 3$ – Member plates $\alpha_{cr} > 4$ – Connection plates (i.e. bracket plates)
ASD	$\alpha_{cr} > 4.5$ – Member plates $\alpha_{cr} > 6$ – Connection plates (i.e. bracket plates)

Slenderness limit ratio for non slender connecting plates $\frac{L_c}{r} = 25$

IDEA StatiCa®

$$F_e = \frac{\pi^2 E}{(L_c/r)^2} = \frac{\pi^2 (29,000 \text{ ksi})}{(25)^2} = 458 \text{ ksi}$$

$$\alpha_{cr} = \frac{F_e}{F_y} = \frac{458}{36} = 12.7$$

12

B

Check of gusset plate for buckling at the **Whitmore section**

2. Evaluation of Buckling in IDEA StatiCa Connection (Linear Buckling Analysis)

Critical Buckling factor in CBFEM **more** than recommended global limit factor by AISC

Critical Buckling factor in CBFEM **less** than recommended global limit factor by AISC

Connection is **safe for buckling**

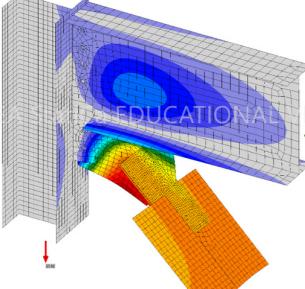
Ways to increase the buckling factor in CBFEM or AISC

1. Increase gusset plate thickness or
2. Stiffen the members in connection with stiffeners or / and doubler plates.

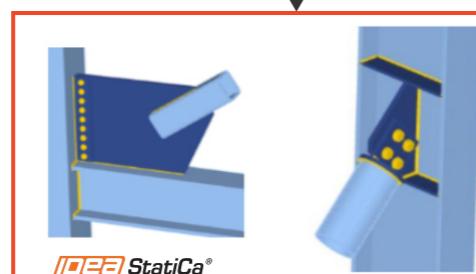
a. Type of buckling in Connection

a. **One Side** Restraint/connected

a. **Global Buckling** (Global Limit factors applies)

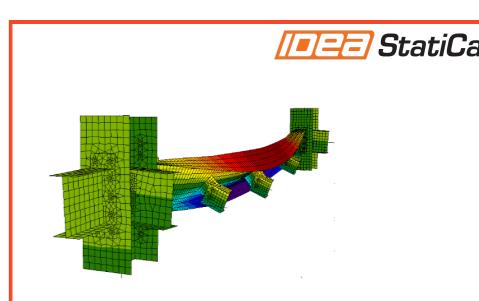

Critical Buckling factor in CBFEM **more** than recommended local limit factor by AISC

Critical Buckling factor in CBFEM **less** than recommended local limit factor by AISC


Connection is **safe for buckling**

b. **Two / Three** sides restrained or connected

b. **Local Buckling** (Local Limit factors applies)



Loads	Shape	Factor
> -53.2K	1	7.94
	2	20.53
	3	22.09

Issue with buckling of local member plate or in thin walled / hollow section members

Use **IDEA StatiCa Member** [Non-Linear Buckling Analysis]

