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1. Introduction 

Objective and Scope 

The objective of this report is the verification of the LBA (linear buckling analysis) and GMNIA 

(geometrically and material nonlinear analysis with imperfections) module of the IDEA StatiCa 

Member software application version 21.0. The resulting resistances from IDEA StatiCa Member 

are compared with equivalent Abaqus CAE 2019 [1] simulations. For the recommendation of 

local and global imperfection assumptions, additional Abaqus simulations were performed. 

Therefore, the selected imperfections were chosen according to the specifications of EN 1993-

1-1 [2], prEN 1993-1-1 [3] and EN 1993-1-5 [4]. Further considerations regarding the choice of 

eigenmode shapes for interactive cases of global + local buckling were carried out with the 

aim of creating practice-oriented recommendations. Finally, recommendations are developed 

for practical design using IDEA StatiCa Member. 

 

2. Model Description 

A general FEM-model overview is shown in Fig. 1 and Fig. 2. The IDEA StatiCa Member model 

consists of three basic parts, the analysed member itself and two additional related members 

with a far higher stiffness than the actual member. This provides an exclusive failure in the 

member without the influence of the top and bottom edge boundaries. The setting for the 

generation of the mesh “Number of elements on biggest member web or flange” was adjusted 

from the default value of 20 to a higher value of 30, in order to match the mesh of the ABAQUS 

models. All additional values within the “Code and calculation settings” were not changed. The 

loads were applied through the boundaries at the top and bottom plate as shown in Fig. 1 in 

order to create different N-M load interactions. Butt welds were selected to achieve fixed 

boundary conditions of plates of I-shaped sections to the related members and to avoid any 

failure of welds prior to failure of the sections.  

An equivalent Abaqus comparison model is shown in Fig. 2, where the use was made of three-

dimensional shell elements of type S4R. The boundary conditions and additional loads were 

applied through reference points (RF-Points) at the top and the bottom, each connected 

through an MPC-Beam (multiple point constraint) formulation to associated node sets on the 

outer extremities (red dotted edges). The edges of the I-shaped sections were fixed to these 

MPC-Beams. The web and the flanges were discretized into 30 and 20 elements, respectively. 

A thorough look at additional possible model solutions from literature – regarding its ad-

vantages and disadvantages – is taken in Section 3, followed by a subsequent modelling choice 

and validation.  
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T1 

 

T2 – T3 

 

T4 

Figure 1: IDEA StatiCa Member transparent model for different load situations T1, T2-T3, T4 

 

 

T1 T2 – T3 T4 

Figure 2: General Abaqus FE-Models for different load situations T1, T2-T3, T4 

In total 56 models (see Tab. 1) were compared, regarding different load combinations of nor-

mal force and moment (T1 to T4), imperfection amplitudes and cross-section slenderness. The 

chosen steel grade of S355 and the member length of the considered cross-sections with 

800 mm was set constant throughout the investigations.  
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Table 1: Parameter overview  

 

  

Considered Cross-Sec-

tions 
HEA300 HEA800 IPE300 IPE500 

Imperfection ampli-

tude 
d/200 d/400 d/200 d/400 d/200 d/400 d/200 d/400 

Load combinations 

T1: N T1: N 

N-M: 

T2y: ey = 60mm; T2z: ez = 60mm 

T3y: ey = 300mm; T2z: ez = 300mm 

N-M: 

T2y: ey = 60mm; T2z: ez = 60mm 

T3: ey = 300mm; T2z: ez = 300mm 

T4y: M T4z: M T4y: M T4z: M 

 

3. Choice and validation of the Abaqus model 

 
a) 

 
b) 

 
c) 

Figure 3: Common model approaches for I- and H-shaped profiles a) Solid-model; b) Shell-beam-model; 

c) Shell-model 

Three common models for I- and H-shaped profiles are summarized in Fig. 3, including a) solid-

model; b) shell-beam-model; c) shell-model. Solid models (see Fig. 3 a)) can lead to a realistic 

geometry approximation, including the influence of the fillets between the web and the flanges. 
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Nevertheless, requiring the implementation of the whole cross-section geometry, the calcula-

tion process can become computationally time-consuming, leading to necessary simplifica-

tions within the models.  

A more simplified model is shown in Fig. 3 b), where the flanges and the web are modeled with 

shell elements, without a surface interception but with additional beam elements as square 

hollow sections of variable depth and wall thickness at the top and the bottom of the web. The 

beam elements are designed in such a way that they have the same area A and torsional mo-

ment of inertia IT as the missing fillets between the web and flanges. This modelling approach 

was also successfully used and verified in [5].  

One further approach is the use of a shell-model with three plates representing the web and 

the flanges, which are intercepting in the centerline; see Fig. 3 c). Therefore, the fillets are not 

modelled explicitly but are approximated by the overlap between the web and the flanges. 

Following this model assumption not all cross-section values can be taken into account pre-

cisely for hot rolled I-shaped sections; welded profiles are mostly excluded from this. In some 

cases, especially the torsional moment of inertia IT can deviate, depending on the selected 

profile series, around 30% [6]. This can lead, in accordance to the observed problem, to lower 

capacity values e.g. in the case of lateral-torsional buckling (LTB). However, for local instability 

problems, which were investigated throughout this report, members of shorter span are pri-

marily not prone to LTB effects and therefore the above-mentioned modelling shortfall is neg-

ligible. For this reason, model c offers several strategical and numerical advantages e.g. higher 

computational efficiency and higher model homogeneity as applicable for both hot rolled and 

welded I-shaped profiles.  

A preliminary investigation between the above described Abaqus models (Fig. 3) and Idea Stat-

iCa Member was conducted to point out the differences and underline the choice of the used 

Abaqus model for the later procedure, see Section 5. Therefore, an HEA300 profile with a length 

of 800 mm and the steel grade S355 was selected and loaded with a normal force acting in the 

center of gravity. In a first step, a linear bifurcation analysis (LBA) was performed in Idea StatiCa 

Member to find an optimal discretization density or in general an optimal number of elements, 

which is denoted in the program intern settings as a variable input value “Number of elements 

on biggest member web or flange”. With constantly increasing number of elements within the 

cross-section the computed eigenvalues start to converge towards a fixed cross-section de-

pendent value. This convergence was obtained for a number of approximately 30 elements 

within the bigger member, which appear to be the flange for the used HEA300 profile (see 

Tab. 2, Idea StatiCa Member benchmark model highlighted in green). The LBA benchmark re-

sults are then compared with the investigated Abaqus models a, b, and c. Table 2 displays the 

results and its additional deviations in percent for the three first eigenmodes. The highest de-

viations, always using the model of Idea StatiCa Member as a benchmark, results for model a 

(solid-model) and model b (shell-beam-model). The lowest difference occurs for Abaqus model 

c, since its modelling approach corresponds to the configuration of the model in Idea StatiCa 

Member. In contrast, the GMNIA results (see Tab. 3) do not show any significant differences in 

comparison, with model c being the most accurate within this analysis as well.  
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Table 2: LBA Results for different model approaches for an HEA300 profile 

LBA Eigenvalue (kN) 

IDEA StatiCa EV1 EV2 EV3 

   

8* 10720.00 11920.00 13720.00 

20* 10560.00 11600.00 13160.00 

30* (picked benchmark model) 10510.00 11546.20 13087.00 

40* 10510.00 11546.20 13080.00 

Abaqus Model a) 

 

12876.80 (+22.5%) 

 

13783.20 (+19.40%) 

 

15004.10 (+14.65%) 

Abaqus Model b) 

 

13981.50 (+33.0%) 

 

14676.00 (+27.11%) 

 

15501.90 (+18.45%) 

Abaqus Model c) 

(picked Abaqus model) 

 

10505.00 (-0.005%) 

 

11585.30 (+0.34%) 

 

13112.20 (+0.19%) 

*Number of elements on biggest member web or flange 
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Table 3: GMNIA Results for different model approaches for an HEA300 profile 

GMNIA 
Maximum Peak Load (kN) 

IDEA StatiCa 3796.00 

Abaqus Model a) 4017.00 (+5.82%) 

Abaqus Model b) 4019.00 (+5.87%) 

Abaqus Model c) 3814.40 (+0.48%) 

 

Based on these results, it is most appropriate to use model c for further investigations, follow-

ing in Section 5, as the focus is exclusively laid on the comparison between the simulation 

results of finite element models and not e.g. a model calibration.  

A general validation against literature was carried out for model b (shell-beam-model) as a 

preliminary step to verify overall modelling correctness. Therefore different N-M interactions 

were taken into account to calculate a range of critical bifurcation loads (combined lateral-

torsional-buckling- and flexural-buckling loads), normalized by the plastic cross-section re-

sistance. The comparison with analytical solutions from Trahair [7] showed sufficient results. In 

addition, GMNIA calculations for the flexural buckling case about the weak axis were carried 

out for different I and H sections. A comparison with the originally developed ECCS curves for 

flexural buckling (Beer and Schulz [8]) showed a good agreement of the performed GMNIA 

calculations with published and accepted solutions. Further details on an equivalent model 

validation can be taken from [5].  

4. Choice of imperfections 

4.1. Local imperfections 

According to EN 1993-1-5, Annex C [4] the magnitude of local imperfections for the analysis 

of plate buckling may be assumed with a value of e0 = d/200, where d is the height of an 

individual field. In the considered case of hot-rolled I-shaped sections, d was assumed to be 

the height of the web without the geometric consideration of the fillets. In addition, various 

parameters such as the steel grade (S235, S355, S460), different profile geometries (HEA300, 

HEA800, IPE300, IPE500, IPE600) and imperfection amplitudes (d/200, d/300, d/400) were taken 

into account to perform further GMNIA calculations. This was done to find a suitable imper-

fection amplitude that represents the design curve for local buckling (“Winter curve”) of EN 

1993-1-5 [4] in an appropriate manner. The variation of profiles and steel grades was primarily 

done to estimate a wider slenderness range. A summary of the numerical calculations can be 

seen in Fig. 4. The y-axis is represented by a buckling knock down factor ρ, which is defined as 

the estimated local load bearing capacity from GMNIA simulations, normalized by the plastic 

cross-sectional resistance and calculated from the nominal value of fy ∙ A, where A is the cross-

section area of the assumed Abaqus shell model from Fig. 3 c). The local slenderness �̅�𝜌 is 



 

Report WP1-2: I-Shaped Profiles 9 

applied over the x-axis and defined as the square root of the plastic cross-section resistance 

divided by the critical local buckling load estimated from a linear buckling analysis (LBA).  

 

 

Figure 4: GMNIA simulations and comparison with code provision of EN 1993-1-5 [4] 

The red, blue and green dots represent the results from the performed GMNIA simulations, 

where each colour represents a different imperfection amplitude along a visible slenderness 

range. All calculations show a relatively small scatter, coming to lie near the local buckling curve 

of EN 1993-1-5 [4]. Based on these results, the imperfection amplitude of d/200 specified in [4] 

is still recommended for practical use.  

4.2. Global Imperfections 

The general preselection of the initial imperfection magnitude depends on different factors 

like: (i) the type of analysis according to the considered cross-section failure linked to the cross-

section class, (ii) the type of imperfection considered for further calculations i.e. geometric im-

perfections only or equivalent imperfections including a geometric bow imperfection and ad-

ditional residual stresses, (iii) the benchmark resistance in term of plastic or elastic calculation 

which specify the choice of imperfection. The latter corresponds to the global buckling concept 

of EN 1993-1-1 [2], where a cross-section dependent imperfection factor 𝛼 takes both into 

account.  

According to EN 1993-1-1 [2] and prEN1993-1-1 [3] the bow imperfection amplitude, e0, can 

be determined using two approaches, considering either a tabulated length proportional value 

or a slenderness-based formulation based on the elastic critical buckling modes. According to 

EN 1993-1-1, Table 5.1 [2] e0 is the ratio between the member length and a value that depends 

on the global buckling curve (a0, a, b, c, d) and the analysis type: elastic or plastic. A summary 

of GMNIA calculation is presented in Fig. 5, Fig. 6 and Fig. 7, each representing the results for 

an HEA300 profile of varying length and buckling about both axes z-z and y-y, respectively.  
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In the current draft of prEN1993-1-1 [3], a modified formulation for the determination of the 

length affine imperfection e0 is presented (see Eq. 1). Where α is the imperfection factor, de-

pending on the relevant buckling curve, ε the material parameter considering the steel grade, 

β the reference bow imperfection and L the total member length. The choice of the reference 

bow imperfection on the one hand depends on the design method (elastic or plastic) and on 

the other hand the relevant buckling axis (y-y or z-z). The associated numerical simulations can 

be seen in Fig. 6. 

0e L





=    (1) 

 

Table 4: Reference bow imperfection β [3] 

Buckling about axis Elastic design Plastic design 

y-y 1/110 1/75 

z-z 1/200 1/68 

 

The back-calculation of slenderness-based equivalent bow imperfections, in both EN 1993-1-

1 [2] and prEN 1993-1-1 [3], is provided by Eq. 2. 

( ) ( )0 0.2 0.2Rk

Rk

M W
e

N A
   =  − =  −  (2) 

Where e0 is the target imperfection, α the imperfection factor for the relevant buckling curve, 

  the member relative slenderness, MRk the characteristic moment resistance of the critical 

cross-section and NRk the characteristic axial resistance of the cross-section. The imperfection 

amplitudes calculated this way result in smaller deflections and thus resistances that are closer 

to the buckling curves. Fig. 7 gives an overview of GMNIA calculations based on the elastic 

(Fig. 7 a, b) and plastic (Fig. 7 c, d) resistance.  
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Figure 5: Length affine [2] GMNIA calculations for an HEA300 profile and comparison with code provision 

of EN 1993-1-1 [2] a) buckling around z-z elastic design; b) buckling around z-z plastic design, c) buckling 

around y-y elastic design, d) buckling around y-y plastic design 
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Figure 6: Length affine [3] GMNIA calculations for an HEA300 profile and comparison with code provision 

of EN 1993-1-1 [2] a) buckling around z-z elastic design; b) buckling around z-z plastic design, c) buckling 

around y-y elastic design, d) buckling around y-y plastic design 

The basic layout of Fig. 5, 6 and 7 is in all cases the same, where the y-axis is represented by 

the global buckling reduction factor χ, defined by the estimated global resistance and divided 

through the nominal plastic cross-section resistance Npl. Again, as in the case of the assessment 

of local imperfections, the calculated value of Npl = fy ∙ A is based on the nominal values of fy 

and A being the cross-section area of the assumed Abaqus shell model from Fig. 3 c). The 

determined reduction factors are plotted over a normalized global slenderness �̅� along the x-

axis. Therefore the global slenderness was calculated from the square root of the plastic cross-

section resistance divided by the critical buckling load, see Eq. 3.  

,

pl

cr LBA

N

N
 =  (3) 
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Figure 7: Slenderness affine [2] GMNIA calculations for an HEA300 profile and comparison with code 

provision of EN 1993-1-1 [2] a) buckling around z-z elastic design; b) buckling around z-z plastic design, 

c) buckling around y-y elastic design, d) buckling around y-y plastic design 

In the case of the current length affine formulation of the imperfection amplitude according to 

EN 1993-1-1 [2], the elastic design approach leads to estimated numerical results, which follow 

closely the significant buckling curve c for buckling around z-z axis and buckling curve b for 

buckling around y-y axis (Fig. 5 a) and c)). A slightly higher deviation and therefore a more 

conservative assessment is detected throughout the whole slenderness range for buckling 

around z-z and y-y axis in the case of plastic design, comparing the results with the relevant 

buckling curve c and b, respectively (Fig. 5 b) and d)).  

The same applies in the case of the new length affine formulation for the imperfection ampli-

tude according to prEN1993-1-1 [3]. Even though the elastic design approach for buckling 

around z-z axis (Fig. 6 a)) produces results, which are more optimistic in the case of the con-

sidered HEA300 profile, the estimated results for buckling around y-y axis (Fig. 6 c)) are very 

accurate laying precisely on buckling curve b. The plastic design approach generally shows 

more conservative results in both cases for buckling around z-z and y-y axes (Fig. 6 b, d), re-

spectively, where the resulting reduction factors always lie below the buckling curves.  

The latter imperfection formulation (slenderness affine, Fig. 7) leads in the case of the elastic 

design approach to results that are too optimistic over the whole slenderness range for buck-

ling around z-z axis. Although the results for buckling around y-y axis (elastic design) look very 

accurate, it is recommended to use in both buckling directions the slenderness affine imper-

fection amplitudes from the elastic design formulation since the results are slightly on the safe 

side below the global buckling curves (Fig. 7 b) and d)). In terms of practical usability, the length 

affine approach requires fewer computationally intensive steps – calculation of the slenderness, 

which requires the determination of the critical buckling load and the cross-section resistance 

– and is therefore simpler in its overall application.  
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5. Comparisons and Recommendations 

5.1. Comparison of the LBA Results: 

Table 5: LBA Results – HEA300 

 Eigenvalue (EV) 

 EV1 EV2 EV3 

HEA300 

T1 in [kN] 

IDEA StatiCa 10510.04 11546.19 13087.01 

Abaqus 10505.00 11585.28 13112.20 

Comparison 100% 99.70% 99.80% 

T2y in [kN] 

IDEA StatiCa 8000.00 8500.00 11400.00 

Abaqus 7983.80 8566.40 11485.40 

Comparison 100.20% 99.20% 99.30% 

T2z in [kN] 

IDEA StatiCa 7830.00 7860.00 8100.00 

Abaqus 7832.41 7861.24 8126.86 

Comparison 100.00% 100.00% 99.70% 

T3y in [kN] 

IDEA StatiCa 3480.00 3720.00 5040.00 

Abaqus 3497.31 3726.51 5089.76 

Comparison 99.50% 99.80% 99.00% 

T3z in [kN] 

IDEA StatiCa 2610.00 2640.00 2700.00 

Abaqus 2628.59 2645.54 2705.85 

Comparison 99.30% 99.80% 99.80% 

T4y in [kNm] 

IDEA StatiCa 1477.00 1568.00 2136.00 

Abaqus 1479.00 1571.11 2144.62 

Comparison 99.90 99.80 99.60 

T4z in [kNm] 

IDEA StatiCa 933.00 933.00 960.00 

Abaqus 934.74 934.74 962.66 

Comparison 99.80% 99.80% 99.70% 
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Table 6: LBA Results – HEA800 

 Eigenvalue (EV) 

 EV1 EV2 EV3 

HEA800 

T1 in [kN] 

IDEA StatiCa 17400.00 21200.00 35600.00 

Abaqus 17375.90 21055.50 34710.50 

Comparison 100.1% 100.7% 102.6% 

T2y in [kN] 

IDEA StatiCa 17400.00 21150.00 35250.00 

Abaqus 17343.00 20976.00 34416.40 

Comparison 100.3% 100.8% 102.4% 

T2z in [kN] 

IDEA StatiCa 17550.00 21300.00 35250.00 

Abaqus 17360.650 21049.10 34692.00 

Comparison 101.1% 101.2% 101.6% 

T3y in [kN] 

IDEA StatiCa 16800.00 19800.00 30600.00 

Abaqus 16573.60 19411.30 29979.80 

Comparison 101.4% 102.0% 102.1% 

T3z in [kN] 

IDEA StatiCa 16830.00 19350.00 19650.00 

Abaqus 16567.60 18925.00 19222.50 

Comparison 101.6% 102.2% 102.2% 

T4y in [kNm] 

IDEA StatiCa 23160.00 24180.00 30480.00 

Abaqus 23003.00 24087.10 30168.50 

Comparison 100.7% 100.4% 101.0% 

T4z in [kNm] 

IDEA StatiCa 6600.00 6660.00 6840.00 

Abaqus 6571.23 6584.88 6755.00 

Comparison 100.4% 101.1% 101.3% 
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Table 7: LBA Results – IPE300 

 Eigenvalue (EV) 

 EV1 EV2 EV3 

IPE300 

T1 in [kN] 

IDEA StatiCa 3920.00 3960.00 4640.00 

Abaqus 3901.10 3947.22 4612.62 

Comparison 100.5% 100.3% 100.6% 

T2y in [kN] 

IDEA StatiCa 3840.00 3870.00 4470.00 

Abaqus 3815.82 3859.21 4446.53 

Comparison 100.6% 100.3% 100.5% 

T2z in [kN] 

IDEA StatiCa 3650.00 3700.00 4230.00 

Abaqus 3624.36 3674.44 4197.45 

Comparison 100.7% 100.7% 100.8% 

T3y in [kN] 

IDEA StatiCa 2580.00 2620.00 3000.00 

Abaqus 2578.91 2605.91 2989.56 

Comparison 100.0% 100.5% 100.3% 

T3z in [kN] 

IDEA StatiCa 1150.00 1150.00 1150.00 

Abaqus 1145.03 1146.21 1149.50 

Comparison 100.4% 100.3% 100.0% 

T4y in [kNm] 

IDEA StatiCa 1220.00 1232.00 1416.00 

Abaqus 1209.00 1222.00 1402.01 

Comparison 100.9% 100.8% 101.0% 

T4z in [kNm] 

IDEA StatiCa 373.00 373.00 373.00 

Abaqus 368.90 369.10 369.10 

Comparison 101.1% 101.1% 101.1% 
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Table 8: LBA Results – IPE500 

 Eigenvalue (EV) 

 EV1 EV2 EV3 

IPE500 

T1 in [kN] 

IDEA StatiCa 6780.00 7200.00 9720.00 

Abaqus 6752.43 7123.61 9500.34 

Comparison 100.4% 101.1% 102.3% 

T2y in [kN] 

IDEA StatiCa 6700.00 7100.00 9600.00 

Abaqus 6711.60 7071.83 9405.83 

Comparison 100.6% 100.4% 102.1% 

T2z in [kN] 

IDEA StatiCa 6720.00 7080.00 9420.00 

Abaqus 6703.95 7059.50 9395.84 

Comparison 100.2% 100.3% 100.3% 

T3y in [kN] 

IDEA StatiCa 5960.00 6200.00 8000.00 

Abaqus 5939.74 6145.82 7876.32 

Comparison 100.3% 100.9% 101.6% 

T3z in [kN] 

IDEA StatiCa 3768.00 3788.00 3788.00 

Abaqus 3737.90 3754.62 3759.72 

Comparison 100.8% 100.9% 100.8% 

T4y in [kNm] 

IDEA StatiCa 4808.00 4864.00 5952.00 

Abaqus 4774.35 4831.90 5903.46 

Comparison 100.7% 100.7% 100.8% 

T4z in [kNm] 

IDEA StatiCa 1236.00 1236.00 1244.00 

Abaqus 1227.90 1228.40 1233.70 

Comparison 100.7% 100.6% 100.8% 
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Figure 8: Comparison of LBA results for HEA300 and HEA800 
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Figure 9: Comparison of LBA results for IPE300 and IPE500 

The results of the LBA comparison are summarized in Tables 3 to 6 and additionally shown in 

Figure 4 and 5, respectively. The LBA comparison generally shows very small deviations be-

tween the results of IDEA StatiCa Member and Abaqus, for the three considered eigenvalues 

(EV1–EV3) related to the different load conditions from Table 1. A maximum difference of 3% 

can be identified for the HEA800 profile, load case T1, EV3 (s. Figure 4, bottom). However, all 

other results show significantly smaller differences between the bifurcation loads and are 

therefore well within the range of acceptance. It should be noted here that IDEA StatiCa Mem-

ber provides in most cases a slightly higher linear buckling factor than Abaqus.  
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5.2. Comparison of the GMNIA Results: 

 

 

Figure 10: Comparison of GMNIA results for HEA300 and HEA800 
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Figure 11: Comparison of GMNIA results for IPE300 and IPE500 

The GMNIA results are summarized in Fig. 10 and 11, again for all load conditions displayed in 

Table 1. The resistance comparison between IDEA StatiCa Member and Abaqus generally shows 

only minor deviations of the achieved maximum loads for load combinations T1 to T3 with no 

greater deviation than 2%. With rising eccentricity a slight increase between the compared 

loads is detected with a maximum of 3% (s. Figure 7, bottom, load combination T4,z). The 

achieved loads, calculated by IDEA StatiCa Member are always slightly lower than the calcu-

lated loads in Abaqus. Again, this level of deviation is common and well between the range of 

acceptability.  
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6. Choice of eigenmode shapes for interactive cases of global + local buckling 

The strength predictions based on GMNIA calculations can be strongly dependent on the 

choice of imperfection shapes, which are determined in advance by LBA analysis and the 

respective associated imperfection amplitudes. A common approach is to use the shape of the 

first eigenmode as the applied initial imperfection for subsequent GMNIA calculations. 

However, in important cases, this approach could neglect a possible interaction between local 

and global buckling, with significant consequences for the estimated load-bearing capacity. 

For this reason, it is important to ensure that both local and global imperfection shapes are 

included in the GMNIA calculations whenever an interaction between the two is detrimental. 

On the other hand, it may be both unnecessary and cumbersome to always consider both types 

of imperfection. For this reason, recommendations are developed in the following section 

based on examples and previous experience of the authors. 

For the Abaqus [1] calculations carried out for this purpose and summarized in Fig.12, the 

amplitudes of the local and global imperfections were set to a constant value of d/200, in the 

case of the local amplitude and a length affine, buckling curve dependent global amplitude 

according to EN 1993-1-5 [4] and EN 1993-1-1 [2], respectively. Fig. 12 shows the results of 

GMNIA simulations for a centrically loaded, hot rolled HEA300 and IPE500 profile of steel grade 

S355 with varying member lengths for buckling about both axes z-z and y-y.  

In each of the presented diagrams three different sets of GMNIA calculations were performed 

in order to obtain the load-bearing capacity using only the local eigenform (red dots), a com-

bination of the local and global eigenforms (blue dots) and the global eigenform exclusively 

(green dots). The local capacity (red dots) is always represented through the local slenderness, 

which was estimated through LBA calculations and therefore remains almost at the same spot 

for different lengths. This forms an artificial “transition line” separating the “dominant” first 

eigenforms into local and global imperfection shapes. Therefore, all models with a calculated 

αcr,glob < αcr,loc will have a first eigenmode governed by global buckling, while all models with 

αcr,glob > αcr,loc have a local first eigenmode. The global capacity (green and blue dots), on the 

other hand, is represented through the global slenderness, again estimated through LBA cal-

culations performed in advance.  

Fig. 12 a and c shows the results for a hot-rolled HEA300 profile, for buckling about z-z and 

y-y axes. The corresponding αcr,loc = 2.50 lies between the global and local limit values of αlim,glob 

= 25 and αlim,loc = 2.20, derived respectively from the plateau values of the column buckling 

curves of EN 1993-1-1 [2] and the “Winter curve” for plate buckling (case of constant compres-

sion in a plate supported on all four sides). Due to the fact that αcr,loc > αlim,loc local effects do 

not have a significant influence on the overall behaviour of this thicker-walled section. This is 

confirmed by comparing the GMNIA results of the global capacity, using the overlaid global 

and local eigenforms and the GMNIA results using the global eigenform only, leading to a 

maximum difference of lower than 1.0% and the conclusion that local imperfections have a 

subordinate influence for the considered cross-section. On the other hand, local imperfections 

generally need to be taken into account in cases where αcr,loc < αlim,loc; see Fig. 12 b and d. 
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Comparing the GMNIA results of the global capacity again, taking the superposition of global 

and local eigenmode as opposed to only the global eigenmode, will lead to significant differ-

ences. Neglecting the inclusion of local imperfections would lead to an overestimation of the 

maximum load by up to 7% for the investigated cases of buckling around both axes z-z and 

y-y, especially for shorter members. On the other hand, for shorter members it may be con-

venient and suitable to only account for local buckling in GMNIA design calculations.  

 

 

 

 

Figure 12: Impact of the choice and combination of the eigenforms on the buckling resistance a, b) 

buckling around z-z axis for an HEA300 and IPE500 profile; c, d) buckling around y-y axis for an HEA300 

and IPE500 profile 
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The requirement to apply – or not – global imperfections may be formulated depending on 

the value of αcr,glob and its ratio to αcr,loc, denominated as “f” in the following (see Eq. 3).  

2
,

2

,

cr glob loc

cr loc glob

f
 

 
= =  (3) 

One obvious limit case for which it is certainly appropriate to neglect the global imperfections 

is given for cases where αcr,glob ≥ αlim,glob is fulfilled. This would be equivalent to a case where 

the compression member is so stocky that it comes to lie in the “plateau” of the global buckling 

curves of EN 1993-1-1 [2]. If the upper condition is not met, the relation described by factor f 

(see Eq. 3) may be checked and a limit factor may be used to ensure that, if the distance be-

tween the two αcr-values is high enough, the influence of global imperfections is small enough 

to be neglected. In these cases, GMNIA calculations may be performed considering only local 

imperfections, as these will determine the resistance entirely.  

Based on experience and the theoretical considerations of the analytical buckling curves and 

their relative distance, it was possible to formulate the following, safe-sided recommendations. 

Therefore, whenever it becomes necessary to include local imperfections in GMNIA calculations 

(cases with cr,loc < lim,loc), the simultaneous consideration of global imperfections may be ne-

glected if factors f exceed the following limit values (valid for I-shaped sections): 

- flim,a = 3.50 for I-shaped sections buckling curve a applies 

- flim,b = 4.50 for I-shaped sections buckling curve b applies 

- flim,c = 6.00 for I-shaped sections buckling curve c applies 

The flowchart below provides a practice-oriented overview of the above-described decision 

criteria. The values of lim,loc and lim,glob are 2.2 and 25, respectively.  

The following two examples shall explain the general workflow of the presented flowchart: 

Worked out Flow Chart Example 1 - αcr,loc ≥ αlim,loc (Fig. 12 a, c): 

In the first considered case αcr,loc > αlim,loc, therefore high enough that it comes to lie in the 

plateau of the nominal curve of EN 1993-1-5 [4] (Winter curve), meaning that the relative local 

slenderness of the profile is small without having a significant influence on the overall behav-

iour of the member. This can also be identified in Fig. 12 a) and c), as no difference between 

the estimated results of “GMNIA with global imperfections” and “GMNIA with local + 

global imperfections” is visible/detected within the numerical simulations. Depending on the 

global slenderness, respectively the value of αcr,glob, two triggering conditions are interesting 

for the further choice of the global imperfection. If αcr,glob < αlim,glob = 25 a global imperfection 

has to be applied according to EN 1993-1-1 [2], meaning that the profile is prone to global 

instabilities. If the condition αcr,glob ≥ αlim,glob = 25 is met, meaning that the profile is so short 

that it comes to lie in the plateau of the global buckling curve, no further imperfections need 

to be applied (see Fig. 12 a) for L = 250 mm).  
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Worked out Flow Chart Example 2 - αcr,loc ≤ αlim,loc (Fig. 12 b, d): 

In this particular case αcr,loc is lower than the limit value of αlim,loc = 2.2, according to EN 1993-

1-5 [4], and therefore local imperfections have a dominant influence on the load-bearing ca-

pacity except for the cases where αcr,glob ≤ αcr,loc, meaning that the length of the profile and its 

associated global imperfection amplitude are dominating the overall interactive behaviour. The 

horizontal red dotted line, throughout all diagrams of Fig. 12, indicates this transition area. If 

this case applies, the bespoke procedure of “Flow Chart Example 1” must be carried out, since 

only the choice of whether the global imperfection has to be used or not, must be considered. 

In cases where αcr,glob > αcr,loc, two further possible conditions must be investigated. For very 

short profiles where αcr,glob ≥ αlim,glob only local imperfections need to be taken into account, 

since the profile has on the one hand high local slenderness but at the same time very low 

global slenderness. Additionally, a combination of local and global imperfections must be con-

sidered if the value flim = αcr,glob / αcr,loc (according to the global buckling curve a, b or c) is not 

reached.  

 

Figure 13: Flow chart to determine the applied imperfections 
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7. Conclusions 

The comparison between the calculations in the IDEA StatiCa Member software and the FEM 

program Abaqus showed generally small deviations in the LBA as well as GMNIA results with a 

maximum difference of 3% in individual cases. This level of deviation is common and well be-

tween the range of acceptability.  

Investigations on the choice of local and global imperfection amplitudes – according to code 

provision of EN 1993-1-1 [2], prEN 1993-1-1 [3] and EN 1993-1-5 [4] – lead to the following 

conclusions.  

• In terms of local buckling the imperfection amplitude of d/200 showed a good agree-

ment with the EN 1993-1-5 [4] “Winter curve” for plate buckling (case of constant com-

pression in a plate supported on all four sides and in constant compression).  

• Based on the calculations in section 4.2 a length proportional approach according to 

EN 1993-1-1 [2] is sufficient and safe-sided when using the elastic design approach for 

the evaluation of imperfection amplitudes. The same can be stated for the new formu-

lation of the imperfection amplitude (see Eq. 1) regarding prEN1993-1-1 [3]. It should 

be noted that β, the new reference bow imperfection (see Tab. 2), is not only dependent 

on the design approach but also the buckling axis “y-y” or “z-z”.  

• When using the slenderness affine imperfection amplitudes according to EN 1993-1-1 

[2] and prEN 1993-1-1 [3], it is recommended to use the plastic resistance. This ap-

proach requires that the magnitude of the relative slenderness is determined before-

hand. Additionally, the calculating of an imperfection amplitude for buckling around 

“y-y” or “z-z” axis must consider the axis-related section modulus Wpl,y or Wpl,z. 

Additional investigations were carried out to provide decision support, whether an interaction 

of local and global imperfections is required or not. Therefore, a safe-sided recommendation 

was formulated, introducing limit values (flim), which are derived from the relative distance of 

the analytical buckling curves of EN 1993-1-1 [2] and EN 1993-1-5 [4]. Whenever these limits 

are exceeded by the calculated factors f (see Eq. 3), global imperfections may be neglected in 

cases with cr,loc<lim,loc for the consideration of I-shaped hot rolled and welded cross-sections. 

It shall be noted that Annex C of EN 1993-1-5 [4], as well as prEN 1993-1-14 [9] (Design by 

FEM), make use of the “70%-rule” for the combination of imperfection modes and amplitudes. 

This rule postulates that two GMNIA calculations should be carried out when local + global 

interactive buckling may be dominant: one with 100% + 70% of the maximum specified ampli-

tude in either case. In this report, however, we recommend avoiding this double calculation by 

using the amplitudes given in section 4.2 for global buckling and the amplitude of d/200 (see 

section 4.1) for local buckling. This is sufficiently accurate and safe-sided for all cases that re-

quire a combined consideration of imperfections according to the presented flowchart in sec-

tion 6, Fig. 13.  
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