
Verification example – Concrete in compression

Type of connection: Base plate subjected to pure compression

- Unit system: Metric
- Designed acc. to: CSA S14-16 and CSA A23.3
- Investigated: Concrete in compression
- Plate Materials: 350W
- Base plate thickness: 30 mm

Anchor bolts: M20, grade A325, standard holes with diameter 22 mm

Geometry:

Applied forces:

N = -2000 kNV = 0 kN

.

M = 0 kNm

Procedure:

The compressive resistance of concrete is determined in accordance with S16-14 - 25.3.1 and CSA A23.3 - 10.8. When the supported surface of the concrete is larger than the base plate the design bearing strength is defined as

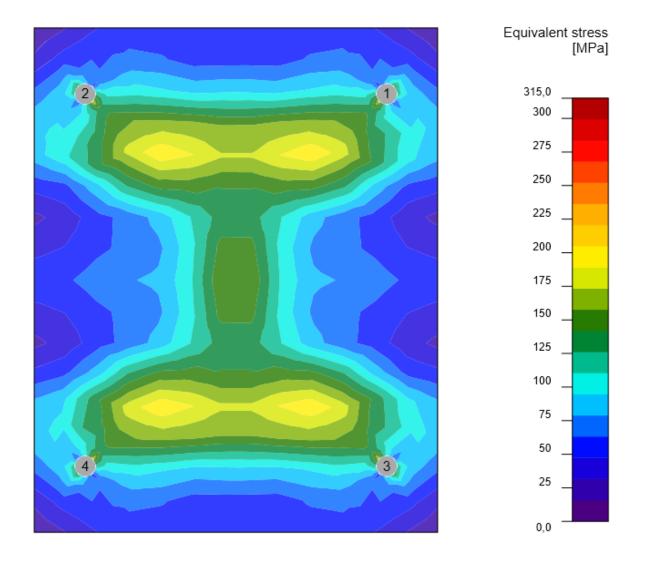
$$f_{\rm p(max)} = 0.85\phi_{\rm c}f_{\rm c}'\sqrt{\frac{A_2}{A_1}} \le 1.7\phi_{\rm c}f_{\rm c}'$$

where:

- $\phi_{\rm c} = 0.65$ resistance factor for concrete,
- f'_{c} the concrete compressive strength,
- A₁ base plate area in contact with concrete surface (upper surface area of the frustum),
- A₂ concrete supporting surface (geometrically similar lower area of the frustum having its slopes of 1 vertical to 2 horizontal).

The assessment of concrete in bearing is as follows

 $\sigma \leq f_{p(\max)}$

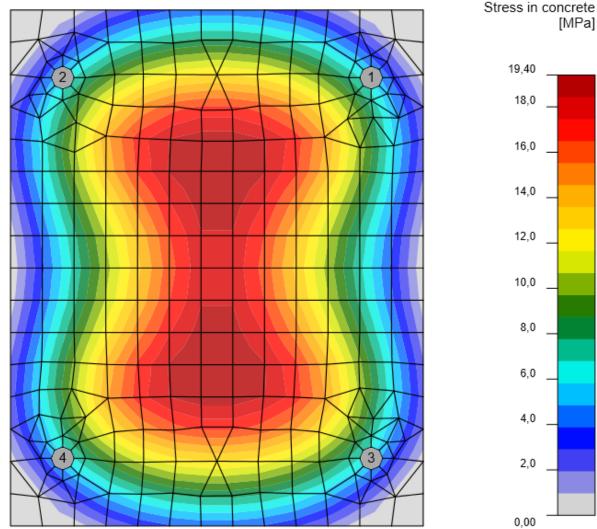

where:

• σ is the average compressive stress under the base plate.

IDEA StatiCa uses a Winkler subsoil model for concrete foundation pad as simplification.

IDEA StatiCa Connection

According to Canadian customs, the base plate should not yield. From the following picture, it can be seen that the maximum stress on the base plate is 204.5 MPa so it is stiff enough.


Summary	Analysis	Plates	Welds	Anchors	Concrete block	Shear
Check of I	members	and st	eel plat	es for ext	treme load effe	ct

	ltem	Th [mm]	Loads	σ,Ed [MPa]	ε,Pl [%]	Status
	W250x115-bfl 1	22	LE1	200,2	0,0	0
	W250x115-tfl 1	22	LE1	200,3	0,0	0
	W250x115-w 1	14	LE1	151,0	0,0	0
>	BP1	30	LE1	204,5	0,0	0

Design data

	Material	Fy [MPa]	ε,lim [%]
>	350W	350,0	5,0

The maximum stress in concrete reaches 19.4 MPa but for the assessment, the average stress below the base plate is important. IDEA StatiCa calculates the average stress on the area under the base plate which is in compression so the method works for general loading, i.e. by combination of tension and bending moment. Corners of the base plate (grey area on the following picture) are not in contact with the concrete and therefore, the loaded area is slightly lower and the averaged stress is slightly higher than according to hand calculation.

		-									
Sun	nma	ry Ai	nalysis	Plates	Welds 4	Anchors	Concrete	block	Shear		
he					concrete	for extr	eme load		t	1	
:he				ress in A1 [m2]		f <mark>or extr</mark> σ [MPa]	eme load Fp [MPa]	Ut [%]	t Status		

[MPa]

CISC

IDEA StatiCa Connection

CISC Verification Example

Concrete in compression

Material:		Plan		
Material of concrete:	$f'_c \coloneqq 20.7 \text{ MPa}$			
Resistance factor for concrete:	$\phi_c := 0.65$	Concrete pad		
Geometry:		¥[[[[[[]]]		
Width of the concrete pad supporting area:	$a_c \coloneqq 700 \text{ mm}$	Loaded area A		
Depth of the concrete pad supporting area:	<i>b_c</i> :=600 mm			
Height of the concrete pad:	$h_c \coloneqq 800 \text{ mm}$	Supporting area A_2		
Width of the base plate:	$a_{bp} \coloneqq 400 \text{ mm}$	Elevation		
Depth of the base plate:	$b_{bp} = 500 \text{ mm}$			
Thickness of the base plate:	<i>t</i> _{<i>bp</i>} := 30 mm	A_2 is measured on this plane		
Loaded area:	$A_1 := a_{bp} \cdot b_{bp} = 200000 \text{ mm}^2$	7		
Supporting area:	$A_2 := a_c \cdot b_c = 420000 \text{ mm}^2$	L		
Loading:				
Normal compressive force:	$N \coloneqq 2000 \text{ kN}$			
Concrete compressive strength:	$f_{pmax1} \! \coloneqq \! 0.85 \cdot \phi_c \! \cdot \! f'_c \cdot \sqrt{\frac{A_2}{A_1}} \! = \! 1$	6.57 MPa		
	$f_{pmax2} \coloneqq 1.7 \cdot \phi_c \cdot f'_c = 22.87 \text{ MI}$	Pa		
Average compressive stress under the base plate:	$\sigma \coloneqq \frac{N}{a_{bp} \cdot b_{bp}} = 10 \text{ MPa}$			
Utilization:	$\frac{\sigma}{\min\left(\!f_{pmax1},f_{pmax2}\!\right)}\!\!=\!\!60\%$			

Comparison

CISC suggests using stiff base plate which ensures the contact between the base plate and the concrete foundation pad under pure compression. To be able to tackle general loading, IDEA StatiCa software uses a numerical analysis to determine the area which is in contact between the base plate and the foundation pad. There are very slight differences between manual assessment and IDEA StatiCa – 1 % in the presented example.