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Abstract. Design of bolted slip resistant connection are integral part of design of steel bridges. 

In recent years, Component Based Finite Element Method (CBFEM) has been increasingly 

expanding in modelling of structural joints. The proper models of bolts play the major role in 

prediction of connection stiffness, resistance and deformation capacity. This contribution will 

describe the influence of pull and shear interaction for correct design of a group of bolts. The 

second part will be focussed to an advanced model of slip resistance bolts. The last chapter 

presents the advantages of procedure on examples of various bridge connection, which design 

was supported by CBFEM.  

1.  Introduction 
Curve fitting procedures based on experimental evidence were and are still used for safe and economical 

design of connections. Based on analytical models of resistance of connectors, as welds, bolds, and 

plates, and the estimated lever arm of internal forces was and still is predicted resistance of connection. 

Zoetemeijer [1] was the first who equipped this model with estimation of stiffness and deformation 

capacity. The elastic stiffness was improved in the work of Steenhius, see [2]. Basic description of 

components behaviour in major structural steel connections was prepared by Jaspart for beam to column 

connections [3] and by Wald et al for column bases [4]. Method implemented in the current European 

structural standard for the steel and composite connections, see [5] and [6], is applied in majority of 

software for structural steel used in Europe. The idea was generalised by da Silva [7] for 3D behaviour 

including nonlinear parts of behaviour. Procedure starts with decomposition of a joint to components 

followed by their description in terms of normal/shear force deformation behaviour. After that, 

components are grouped to examine joint moment-rotational behaviour and classification / 

representation in a spring/shear model and application in global analyses. Advantage of this often called 

Component Method (CM) is integration of current experimental and analytical knowledge of 

connections components behaviour, bolts, welds and plates. This provides very accurate prediction of 

behaviour in elastic and ultimate level of loading. Verification of the model is possible using simplified 

calculation. Disadvantage of CM is that experimental evaluation of internal forces distribution is 

available only for limited number of the open section joint configurations. In temporary scientific papers, 

description of atypical components is either not present or has low validity and description of 

background materials. The CM´s is not developed for hand calculation but as a method for preparation 

of design tables or software tools. Models of hollow section connections are described in Ch. 7 of 



 

 

 

 

 

 

EN1993-1-8:2006 [5] by curve fitting procedures based on mechanical and numerical experiments. 

Their component representation is prepared according to the curve fitting procedures available based on 

selection of the suitable level arms and effective widths.  

The global analyses of steel structures is today carried out FEA and all the traditional procedures are 

not used any more (like force method, three moment equation, Cremon´s pattern, the Cross method or 

the method distribution moments). In current fast development of software ability connections ready to 

be designed by FEA and thousands experiments is available the validation process. This paper describes 

the model of bolts available for Component Based Finite Element Model (CBFEM) which is a multilevel 

FEA method to design connections of steel structures [8] and its application to steel riveted bridges. The 

steel plates in connection are analysed in FEA by shell elements as separate plates connected by 

restrains. The proper behaviour of connectors, of bolts, welds etc., is treated by introducing components 

representing well its behaviour in term of initial stiffness, ultimate resistance and deformation capacity.  

2.  Bolted connections 
In CBFEM are components as bolt and rivet modelled by a dependent nonlinear springs. The 

deformation stiffness of the shell element, which models the plates, distributes the forces between the 

bolts and simulates the adequate bearing of the plate. 

2.1.  Bolt in tension 

The spring of a bolt/rivet in tension is described by its initial deformation stiffness, design resistance, 

initialisation of yielding and deformation capacity. The initial stiffness is derived analytically as 

 � = ���
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where E is the Young’s modulus, As the tensile stress area of a bolt and Lb the bolt elongation length. 

The model corresponds well to experimental data, see [9]. For the initialisation of yielding and the 

deformation capacity is assumed that the plastic deformation occurs in the threaded part of the bolt shank 

only. The load-deformation diagram of the bolt is shown in Figure 1 and is derived for 
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where k is the linear stiffness of bolt, kt the stiffness of bolt at the plastic branch, Ft,el the limit force for 

linear behaviour, A the percentage elongation after a fracture of bolt, Ft,Rd the limit bolt resistance and 

ut,Rd the limit deformation of bolt. The design values according to ISO 898:2009 [10] are summarised in 

Table 1. 

Table 1. Bolt parameters in tension, based on ISO 898:2009 [10]. 

Grade 
Rm Re = Rp02 A E c1 c2 

[MPa] [MPa] [%] [MPa] [-] [-] 

4.8 420 340 14 2,1E+05 0,011 21,6 

5.6 500 300 20 2,1E+05 0,020 35,0 

6.8 600 480 8 2,1E+05 0,032 8,8 

8.8 830 660 12 2,1E+05 0,030 9,5 

10.9 1040 940 9 2,1E+05 0,026 5,0 



 

 

 

 

 

 

 

Figure 1.  
Load–deformation diagram of the bolt in tension . 

2.2.  Bolt in shear 

The initial stiffness and the design resistance of a bolt in shear is in CBFEM modelled according to cl. 

3.6 and 6.3.2 in EN1993-1-8:2006. The spring representing the bolt in shear has bi-linear force 

deformation behaviour. Deformation capacity is considered according to [8] as 

 %&� = 3 %��  (5) 

Initialization of yielding is expected, see Figure 2, at 

 �(,)* = 2/3 �(,-. (6) 

 

Figure 2.  
Force deformation diagram of the bolt in shear. 

2.3.  Bolt interaction 

A combination of a shear and a tension in a bolt is expressed in EN 1993-1-8:2006 in Tab. 3.4 by a 

bilinear relation and checked as 

 max 2�,3�
�,��
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4,��
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where Fv,Ed is the acting bolt shear force, Ft, Ed is the acting bolt tensile force, Fv.Rd is the bolt shear 

resistance, Ft.Rd is the bolt tensile resistance. A condition limiting the bolt resistance is showed in Figure 

3. 
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Figure 3. Bolt tension force as function of deformation in shear and tension. 

2.4.  Preloaded bolts  

In connection with preloaded bolts is transferred the shear force by friction between both surfaces. 

Compare to regular bolts is in controlled the friction and the preloaded force. The final resistance is 

assured by bolt shearing and bolt and plate bearing after the slippage of bolt in the hole. In EN 1993-1-

8:2006 is summarized the resistance of preloaded bolts classes 8.8 and 10.9 in Ch. 3.9. The bolts are 

expected to be preloaded to 70% of its strength fub.  It is expected that the bolt deforms 80 % and the 

plates 20 %. If the external tensile force Ft.Ed to joint in direction of the bolt is applied, the slip resistance 

will be reduced 
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where ks is the bolt hole size factor, µ the slip factor, fub is the bolt strength and As is the bolt area in 

tension. 
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Figure 4. Shear characteristic of the preloaded bolt. 

In design numerical model the component preload bolt is simulated  either as nonlinear spring using 

the preloading force and deformation or by restrains between surfaces, which are representing 

the friction, with a spring, which is including a preloaded force in the bolt. For the bolt 

component represented by the preloading force and its slip deformation is the model similar to 

a conventional bolt model. The shear characteristic is shown in Figure 4. The initial linear shear 

stiffness is determined from the stiffness of the cylinder under the head of the bolt and it is 

practically rigid. The shear force limit includes the external tensile load to the bolt in accordance 

with EN 1993-1-8:2006. The advantage of this simplified model is its computational stability 

and low demands of the FE model and the consistence of results with cl. 3.6.2.2. The model 

does not respect the actual distribution of contact pressures between the plates and the history 

of preloading, but models the bolted connection including the bolt and plates deformation well, 

see Figure 5.  
 

Figure 5. Bolted slip resistant connection, 

 configuration, von Mises stresses and strains at design stage 
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3.  Application for assessment of old steel bridges 
The industrial development in the beginning of the last century would not be successful without the 

transport infrastructure. At those days, many steel riveted bridges were built in the Czech Republic and 

also all over the world. Those bridges are usually at the end of their service life, however, the lack of 

the financial sources forces the infrastructure owners for operating them much longer. To do that, the 

extensive structural assessment of those bridges have to be organised, in order to evaluate the load 

capacity according to the existing state, corrosion weakening and possible fatigue damages. As majority 

of those have used riveting for the connections, the behaviour of the joints is very important for the 

bridge numerical model.   

Traditionally, truss bridges were analysed under certain assumptions, such as the members are loaded 

only by axial forces. This assumption is only true if the connections allow the rotation between elements, 

which in reality is not the case. There are always certain moments transmitted depending on the stiffness 

of the connection. Unfortunately, the riveted joints are mostly complicated and hard to analyse by 

standard FEM software. However, CBFEM models those joints and obtains the initial stiffness, which 

is an essential input to the global numerical model. 

In last two years, several bridges were analysed with the help of the CBFEM method and software 

tool [11]. The results of the impact of the connection stiffness on the behaviour of a historical steel 

railway bridge are shown here together with the main results [12]. The Figure 5 shows the old steel 

heritage bridge in Prague, Vyšehrad, where a number of models were created, such as the connection 

between top chord and bearing vertical, show on the Figure 6 from [13]. 

 

Figure 5. General view of the steel railway bridge in Prague. 

Figure 6. Connection C-02 on railway bridge in Prague, its drawing and its CBFEM model. 

 

The Figure 7 shows the typical detail of the stringer to cross beam joint that is present on many steel 

bridges. Beams are riveted I profiles, with flanges made from riveted angles. Also connection was done 

by riveting of angles to the web of both elements. The model allows to analyse the rotational initial 

stiffness in both directions that can be directly inserted in the global numerical model. Especially this 



 

 

 

 

 

 

type of joint and also the connection between cross beam and main girder are essential for the load 

capacity assessment and the stiffness significantly influence the final result. 

  

  

Figure 7. Stringer to cross beam connection on railway bridge in Prague  

and its moment rotational diagram by CBFEM model. 

 

Seven bridges were analysed with all modelled details on each structure. This amount of data can be 

plotted in the summary diagram, as shown on the Figure 8. This graph can help to roughly predict the 

joint stiffness even without the time consuming analysis.  

 

 

Figure 8. Summary of the results from seven analysed bridges,  

different symbols represents individual bridges. 

 

 



 

 

 

 

 

 

4.  Conclusion 
The global analyses of steel structures is today carried out by FEA and all the traditional procedures are 

not used any more. In new generation of structural Eurocodes after 2021 is expected to stress the 

principles of safety of applications of FEA by System response quantity process in EN1993-1-14:2021. 

The FEA analyses of the structural steel connections is replacing the curve fitting and component design 

methods. For its proper use is necessary to apply a good Validation and Verification procedures with 

well-defined hierarchy to allow a safe use.  

The presented results show the good accuracy of CBFEM verified to CM and to advanced 

calculations/experiments in cases where the CBFEM gives higher stiffness, resistance, or deformation 

capacity, see [8]. The prediction of bolts as component by spring models allow accurate prediction of 

bolted connection resistance, stiffness and deformation capacity takin into account the initial elastic and 

post elastic stages.  

That CBFEM helped to improve the global numerical models of old steel bridges and keep them in 

the service for the longer time. This is a beneficial result for the budget of the owners and lovers. 

5.  Announcement 
The work was prepared under the R&D project MERLION II supported by Technology Agency of the 

Czech Republic, project No TH02020301. 
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